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Abstract: According to the corresponding relationship
between matrix and digraph, the upper bound of
primitive exponent of a class of special three-colored
digraph whose uncolored digraph has n-1 vertices, n+1
arcs and consists of three cycles is studied. With the help
of the inverse of the cycle matrix, we obtain the upper
bound of the primitive exponent. Thus, the problem of
the upper bound of primitive exponent of a class of
corresponding nonnegative Matrix tuple is solved.
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1. Introduction

A three-colored digraph D is a strongly connected
digraph whose arcs are divided by red, blue and yellow.
Given a walk @ in D, r(w),s(w) and t(w) represent

respectively the number of red arcs, blue arcs and yellow
arcs of w, and the composition of @ is the vector

(r(®),5(w),t()) or (r(w),s(w),t(w))" [1].

A three-colored digraph D is primitive if and only if
there exist nonnegative integers h , k and v with
h+k+v >0 such that for each pair (j, j) of vertices there

is an (h,k,v)—walk in D from i to j. The primitive
exponentexp(D), is defined to be the smallest value of

h+k+v over all suchh, kand v [2].
Let C={y,7,, -+, »} be the set of cycles of D. We

can assume that M is the cycle matrix of D, and

al a2 cee al
M=lb b, - b
Cl CZ cee C|

a,,b,c (i=12,---,1) represent respectively the
number of red arcs, blue arcs and yellow arcs in y;. The
content (M ), is defined to be O if the rank(M) <3 and

the greatest common divisor of all 3x3 minors of M,
otherwise [3].

Lemma 1 Let D be a three-colored digraph having at
least one red arc, one blue arc and one yellow arc. Then
D is primitive if and only if D is strongly connected and
content (M) =1 [2].

In fact, using the simple and intuitive characteristics of
graph theory, the related problems of the primitive
exponent of nonnegative matrix pair can be transformed
into two-colored digraph to solve [1-6]. Similarly, the
three-colored digraph is used to solve the related
problems of primitive exponents of corresponding of
nonnegative matrix tuple. So far, the research on the
primitive exponent of nonnegative matrix tuple has only
obtained some results [7-10]. At present, by using the
corresponding relationship between matrix and graph, the
research of three-colored digraph has specific application
background in many aspects such as communication
network, computer science, economics and so on. For
example, it plays an important role to find the strong edge
coloring of bipartite graph in coding cache.

In this paper, for any n>4(neZ*), we consider a

class of three-colored digraph D whose uncolored

digraph is shown in Figure 1.
3 2

Fig 1. Uncolored digraph of D

Clearly, D contains n-1 vertices, n+1 arcs, one
(n—1)— cycle, one 3- cycle and one 2- cycle. From
Lemma 1 and Fig 1, we know that all of arcs in 3—cycle
or 2—cycle have the same color, that is, the composition
of w is the vector (3,0,0) , (0,3,0) or (0,0,3) in
3-cycle, or the composition of  is the vector (2,0,0),
(0,2,0) or (0,0,2) in 2-cycle, then content (M) =1
and D is non-primitive. So, all of arcs must have the
different color in 3—cycle and 2—cycle. Without loss of
generality, we may assume that the cycle matrix of D is

X 11
M= y 11 S
n-l1-x-y 1 0

for some nonnegative integers X, y.
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Theorem 1 D is primitive if and only if —x+y=+1.

Proof From (1), we know ||\/| | =-x+y.BylLemmal,
D is primitive if and only if content (M)=1, that is,
||\/| | =+1. Then the theorem follows.

2. Upper Bound of Primitive Exponents

Theorem 2 Let D be primitive and [M|=-x+y=1,
then

exp(D)snz—%n-

Proof In this case, the inverse matrix of the cycle
matrix M is

-1 1 0
M*=n-2y -n+2y 1
3y-n -3y+n+1 -1
if |M|=—x+y=1 , then x=y-1 .
Associating to the cycle matrix of M , we can see
n-1-x—y=n-1-(y-1)—-y=n-2y>0, SO ygg :

Clearly,

—n+2y<0. The size of matrix elements 3y—n and
—3y+n+1 are related to the value of y in M. For
any pair (j, j) of vertices of D, let P, be the shortest

path from i to J » and denote r(R)=r, b(P)=s"

y(Pij) =t
values of Y, the following four aspects are discussed.

Therefore, combined with the different

Case 1: yzg (n=3k, k>2and keZ").

n
If y=—,then
y 3
n
—-111
3 11 0
_| n Mt=| D D
M = 3 11 3 3
0 1 -1
" 10
3

We only need to prove_that any pair of vertices (i, j)

2 2 2
has an (ZL’Zn +3n 2n”
9 9 9
following results,

y—walk in D. We can get the

N
r 3 , 1
n n n“ n_n
S|+(=+r-s)] — |[+(—=——-=r+—-s-t)|1
(3 ) 3 (9 3 )
t 1
n
L 3 ]
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2n?

1] | °
+(E—s+t) 1= 2n“+3n |. (2

3 0 9

2n’

o

Clearly, r <N _1, s<n, {<". Combined with Fig.1,
3 3 3

if =, then r>0,t>0;if ,_N_q, (", then s>0.
3 3 3

2
Hence M, r _s50, M _Np Mg tspand D git>0.
3 9 3 3 3

By (2), we can see that the walk starts at vertex i,
follows P, to vertex j, goes ", g times around the
3
(n—-1)- cycle, ”_Z_EHES_t times around the 3—
9 3 3

cycle, and N _g ¢ times around the 2—cycle is an
3

2n®> 2n’+3n 2n®

= 2" y_walk. So
(9 9 9)
2 2 2 2
exp(D)le+2” +3n+2L:2n +n
9 9 9 3
n+1

Case 2: y:T(n:?,k—l, k>2and keZ™").

n+1

If y=——=,then
3
oo _
— 11 _
3 1 1 0
— n+1 lI\/Iil': n__2 _n;z l '
M = 3 11 3 3
_ 1 0 -1
n_2 1 0
3

We only need to prove ‘that any pair of vertices (i, j)
2n’+n-10 2n*+4n-7 2n°-2n-4

has an ( , , ) —walk.
9 9 9
We can get the following results,
n-2
r 3 5 1
s +(n—+l+rfs) n+l . —n—27n;2r+n;237t) 1
3 3 9 3 3 L
t n-2
3
2n*+n-10
1 9
- 2 -71. 3
o 2—r+t) || 2n*+4n-7 @)
3 0 9
2n’ -2n-4
9

Clearly, ; <N=2 ¢« n+l t <=2 Combined
3 3 3
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with Fig.1, if s—"*1  then r>0, t>0: if
3
n-2
f=—»
3
n_

then s>0 . Hence nTJrl+r—szo )

n-2
3
2_ —_ —_ —_ —
n-n-2_n 2r+n 2s—tZO and n—2—r+t20-

9 3 3 3
By (3), we can see that the walk starts at vertex i,

follows P; to vertex j, goes n_+1+r_5 times around
3

t=

2
—n—2_n—2r+n—25_t times
3 3

around the 3—cycle, and n__2_r+t times around the
3

the (n—1)—cycle, n

2n’+n-10 2n®*+4n-7 2n2—2n—4)

2-cycleisan (

9 9 9
— walk. So
2 2 2
exp(D)szn +9n 10+2n +94n 7+2n 92n 4

_2n’+n-7
—

Case 3: 1< y<g(yez+).

If 1<y <D, then
3

y-1 11 -1 1 0
M=y 1 1"M*=|n-2y -n+2y 1
n-2y 1 0 3y-n -3y+n+1 -1

We only need to prove that any pair of vertices (j, j)
in D hasan (2ny —4y?,2ny +y—4y?, 2ny —4y?)—
walk. We can get the following results,

r y-1 1
Sl+(y+r=s)| y [|+(ny=2y*—(n=2y)r+(n-2y)s—t)|1
t n-2y 1

1
+(ny+y=-3y* +(n=3y)r—(n-3y+1)s+t)| 1
0
2ny —4y?
=|2ny+y-4y* |’ 4)
2ny —4y?

Clearly, r<y-1,s<y,t<n-2y, 3y-n<0,

-3y+n+1>0. Combined with Fig.1, if s=vy, then
r=0,t>0;ifr=y-1, t=n-2y, then s>0. Hence
y+r—s>0 , ny—2y’—(n-2y)r+(n—-2y)s—t>0
and ny+y-3y*+(n-3y)r—(n-3y+1)s+t>0. By
(4), we can see that the walk starts at vertex i, follows
P, to vertex J . goes y+r—s times around the (n—1)—

cycle,  ny—-2y’—(n-2y)r+(n-2y)s—t  times

around the 3-
ny+y—3y*+(n-3y)r—(n—-3y+1s
+t times around the 2-
(2ny —4y®,2ny +y
—4y?,2ny —4y?)—walk. So
exp(D) < 2ny —4y® +2ny + y —4y? + 2ny — 4y°

cycle, and

cycle is an

=6ny—12y° +y.
Obviously, exp(D) is a function of y . Denote
f(y)=6ny—12y?+y , then f'(y)=6n-24y+1 and

f(y) has a maximum when y — 6n+1 since 1< y<ﬂ
24 3
and yeZ", we have that
2
exp(D) <6ny—-12y* +y < f(g): 3n 4+n.
n+1 n
Cased: __—y<—(yeZ?).
3 <v=;veZ)
Ifn_+1<ygﬂ, then
3 2
y-1 11
M= vy 11
n-2y 1 0
-1 1 0
M™*=In-2y -n+2y 1

3y-n -3y+n+1 -1
We only need to prove that any pair of vertices (i, j)
in D hasan (2y?—4y+n,2y* -3y +n,2ny —4y*)—
walk. We can get the following results,

r y-1 1
sl+(y+r=s)| y |+(ny=2y*—(n-2y)r+(n-2y)s—t)|1
t n-2y 1

1
+(By*-3y—ny+n—@By-n)r+@By—-n-1s+t)| 1
0

2y*—4y+n
= 2y*-3y+n |- (®)

2ny —4y?

Clearly, r<y-1,s<y,t<n-2y, 3y-n>0,

—3y+n+1<0. Combined with Fig.1, if s=y, then
r>0,t>0;ifr=y-1,then s>0,t>0;if r=y-1,

t=n-2y , then s>0 . Hence y+r—-s>0 ,
ny -2y’ -

(n—=2y)r+(n—-2y)s—t>0 and 3y? -3y —ny+n—

@y-nr+(n-3y+1)s+t>0. By (5), we can see that
the walk starts at vertex i, follows p, to vertex j, goes
y+r—s times around the (n—1)—cycle, ny —2y* —

(n—2y)r+(n—2y)s—t times around the 3— cycle,

and ny+y-3y*+(n—3y)r—(n-3y+1)s+t times
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around the 2—cycleisan (2y? —4y+n,2y? —3y+n,
2ny —4y?) —walk. So
exp(D) < 2y° —4y+n+2y? -3y +n+2ny —4y?
=(2n-7)y+2n.
Obviously, exp(D) is a function of y . Denote
f(y)=(2n-7)y+2n, then f'(y)=2n-7 and f(y) is

an increasing function of y . Since n_+1<ygﬂ, we
3 2

have that

3n

exp(D) < (2n—-T7)y+n< f(%):nz—?

Therefore, by comparing the upper bounds of the
primitive exponent in the above four cases, we can get

exp(D) <n” _3?n :

Theorem 3 Let D be primitive and‘M‘:_ery:_l,

then

exp(D) < n? —%n .

Proof In this case, the inverse matrix of the cycle
matrix M is

1 -1 0
M™=|-n+2y+2 n-2y-2 1
-3y+n-2 3y-n+3 -1

Clearly, if |M|=—x+y=-1, then x=y+1 .

Associating to the cycle matrix of M , we can see

n-1-x-y=n-1-(y+)-y=n-2y-2>0 , SO

ygg_l, —n+2y+2<0. The size of matrix elements

—3y+n—2and 3y—n+3 are related to the value of y

in M™. The proof process of Theorem 3 is similar to
theorem 2. So, we will not go into much detail here.

3. Conclusion

By synthesizing Theorem 2 and Theorem 3, we can
get the important conclusion.
Theorem 4 Let D be primitive, then
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exp(D) < nz—%n-
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