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Abstract: According to the corresponding relationship 

between matrix and digraph, the upper bound of 

primitive exponent of a class of special three-colored 

digraph whose uncolored digraph has 1n  vertices, 1n  

arcs and consists of three cycles is studied. With the help 

of the inverse of the cycle matrix, we obtain the upper 

bound of the primitive exponent. Thus, the problem of 

the upper bound of primitive exponent of a class of 

corresponding nonnegative Matrix tuple is solved. 
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1. Introduction 

A three-colored digraph D  is a strongly connected 

digraph whose arcs are divided by red, blue and yellow. 

Given a walk   in D , ( )r  , ( )s   and ( )t   represent 

respectively the number of red arcs, blue arcs and yellow 

arcs of  , and the composition of   is the vector 

( ( ), ( ), ( ))r s t    or ( ( ), ( ), ( ))Tr s t   [1]. 

A three-colored digraph D  is primitive if and only if 

there exist nonnegative integers h , k and v with 

0  h k v  such that for each pair ( , )i j  of vertices there 

is an ( , , )h k v walk in D  from i  to j . The primitive 

exponent exp( )D , is defined to be the smallest value of 

 h k v  over all such h , k and v [2]. 

Let 
1 2{ }, , , lC     be the set of cycles of D . We 

can assume that M  is the cycle matrix of D , and 
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, ( 1,2, , ), i i i i la b c represent respectively the 

number of red arcs, blue arcs and yellow arcs in 
i . The 

content ( M ), is defined to be 0 if the rank ( ) 3M  and 

the greatest common divisor of all 3 3  minors of M , 

otherwise [3]. 

Lemma 1  Let D  be a three-colored digraph having at 

least one red arc, one blue arc and one yellow arc. Then 

D  is primitive if and only if D  is strongly connected and 

content ( ) 1M  [2]. 

In fact, using the simple and intuitive characteristics of 

graph theory, the related problems of the primitive 

exponent of nonnegative matrix pair can be transformed 

into two-colored digraph to solve [1-6]. Similarly, the 

three-colored digraph is used to solve the related 

problems of primitive exponents of corresponding of 

nonnegative matrix tuple. So far, the research on the 

primitive exponent of nonnegative matrix tuple has only 

obtained some results [7-10]. At present, by using the 

corresponding relationship between matrix and graph, the 

research of three-colored digraph has specific application 

background in many aspects such as communication 

network, computer science, economics and so on. For 

example, it plays an important role to find the strong edge 

coloring of bipartite graph in coding cache. 

In this paper, for any 4( ) n n Z , we consider a 

class of  three-colored digraph D  whose uncolored 

digraph is shown in Figure 1.  

 
Clearly, D  contains 1n  vertices, 1n  arcs, one 

( 1) n cycle, one 3 cycle and one 2 cycle. From 

Lemma 1 and Fig 1, we know that all of arcs in 3 cycle 

or 2cycle have the same color, that is, the composition 

of   is the vector (3,0,0) , (0,3,0)  or (0,0,3)  in 

3 cycle, or the composition of   is the vector (2,0,0) , 

(0,2,0)  or (0,0,2)  in 2 cycle, then content ( ) 1M  

and D  is non-primitive. So, all of arcs must have the 

different color in 3 cycle and 2cycle. Without loss of 

generality, we may assume that the cycle matrix of D  is 

1 1
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for some nonnegative integers ,x y . 
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Theorem 1 D  is primitive if and only if 1   x y . 

Proof From (1), we know   M x y . By Lemma 1, 

D  is primitive if and only if content ( ) 1M , that is, 

1 M . Then the theorem follows.  

2. Upper Bound of Primitive Exponents 

Theorem 2 Let D  be primitive and 1  M x y , 

then 

2 3
exp( )

2
 

n
D n . 

Proof  In this case, the inverse matrix of the cycle 

matrix M  is 

1

1 1 0

2 2 1

3 3 1 1



 
 
  

 
      

 n y n y

y n y n

M . 

Clearly, if 1  M x y , then 1 x y . 

Associating to the cycle matrix of M , we can see 

1 1 ( 1) 2 0          n x y n y y n y , so
2


n

y , 

2 0  n y . The size of matrix elements 3 y n  and 

3 1  y n  are related to the value of y  in 1M . For 

any pair ( , )i j  of vertices of D , let 
ijP  be the shortest 

path from i  to j , and denote )( ij rr P , )( ij sb P , 

)( ij ty P .  Therefore, combined with the different 

values of y , the following four aspects are discussed. 

Case 1: 
3


n

y  ( 3n k , 2k and k Z ). 

If 
3


n

y , then 
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We only need to prove that any pair of vertices ( , )i j  

has an 
2 2 22 2 3 2

( , , )
9 9 9




n n n n walk in D . We can get the 

following results, 
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Clearly, 1
3

 
n

r , 
3


n

s , 
3


n

t . Combined with Fig.1, 

if 
3


n

s , then 0r , 0t ; if 1
3

 
n

r ,  
3


n

t , then 0s . 

Hence 0
3
  

n
r s , 

2

0
9 3 3
   

n n n
r s t  and 0

3
  

n
s t . 

By (2), we can see that the walk starts at vertex i , 

follows 
ijP  to vertex j , goes 

3
 

n
r s  times around the 

( 1) n cycle,  
2

9 3 3
  

n n n
r s t  times around the 3  

cycle,  and 
3
 

n
s t  times around the 2 cycle is an 

2 2 22 2 3 2
( , , )
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n n n n walk. So  
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exp( )
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Case 2: 
1
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y ( 3 1 n k , 2k and 

k Z ). 

If 
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We only need to prove that any pair of vertices ( , )i j  

has an
2 22 10 2 4 7

( , ,
9 9

   n n n n
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t . Combined  
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with Fig.1, if 1
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s , then 0r , 0t ; if 
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By (3), we can see that the walk starts at vertex i , 

follows 
ijP  to vertex j , goes 1

3


 

n
r s  times around 

the ( 1) n cycle, 
2 2 2 2

9 3 3

   
  

n n n n
r s t  times 

around the 3 cycle, and 
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)

9

 n n  

 walk. So 
2 2 2

2

2 10 2 4 7 2 2 4
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Case 3: 1 ( )
3
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We only need to prove that any pair of vertices ( , )i j  

in D  has an 2 2(2 4 ,2 4 ,  ny y ny y y 22 4 ) ny y  

walk. We can get the following results, 

2
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 Clearly, 1 r y , s y , 2 t n y , 3 0 y n ,  

3 1 0   y n . Combined with Fig.1, if s y , then 

0r , 0t ; if 1 r y ,  2 t n y , then 0s . Hence 

0  y r s , 22 ( 2 ) ( 2 ) 0      ny y n y r n y s t    

and 23 ( 3 ) ( 3 1) 0        ny y y n y r n y s t . By 

(4), we can see that the walk starts at vertex i , follows 

ijP  to vertex j , goes  y r s  times around the ( 1) n  

cycle, 22 ( 2 ) ( 2 )     ny y n y r n y s t times 

around the 3 cycle, and 
23 ( 3 ) ( 3 1)      ny y y n y r n y s  

t times around the 2 cycle is an 
2(2 4 ,2 ny y ny y  

2 24 ,2 4 )  y ny y walk. So  

2 2 2

2

exp( ) 2 4 2 4 2 4

6 12 .
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Obviously, exp( )D  is a function of y . Denote 

2( ) 6 12  f y ny y y , then ( ) 6 24 1   f y n y  and 

( )f y  has a maximum when 6 1

24
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We only need to prove that any pair of vertices ( , )i j  

in D  has an 2 2 2(2 4 ,2 3 ,2 4 )     y y n y y n ny y  

walk. We can get the following results, 

2
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Clearly, 1 r y , s y , 2 t n y , 3 0 y n ,  

3 1 0   y n . Combined with Fig.1, if s y , then 

0r , 0t ; if 1 r y , then 0s , 0t ; if 1 r y , 

2 t n y , then 0s . Hence 0  y r s , 

22 ny y  

( 2 ) ( 2 ) 0    n y r n y s t  and 23 3   y y ny n  

(3 ) ( 3 1) 0     y n r n y s t . By (5), we can see that 

the walk starts at vertex i , follows 
ijP  to vertex j , goes 

 y r s  times around the ( 1) n cycle, 22 ny y  

( 2 ) ( 2 )   n y r n y s t  times around the 3 cycle, 

and 23 ( 3 ) ( 3 1)       ny y y n y r n y s t  times 
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around the 2cycle is an 2 2(2 4 ,2 3 ,   y y n y y n  

22 4 ) ny y walk. So  

2 2 2exp( ) 2 4 2 3 2 4

(2 7) 2 .

       

  

D y y n y y n ny y

n y n
 

Obviously, exp( )D  is a function of y . Denote 

( ) (2 7) 2  f y n y n , then ( ) 2 7  f y n  and ( )f y  is 

an increasing function of y . Since 1

3 2


 

n n
y , we 

have that 

 2 3
exp( ) (2 7) ( )

2 2
     

n n
D n y n f n . 

Therefore, by comparing the upper bounds of the 

primitive exponent in the above four cases, we can get 

2 3
exp( )

2
 

n
D n . 

Theorem 3 Let D  be primitive and 1   M x y , 

then 

2 3
exp( )

2
 

n
D n . 

Proof In this case, the inverse matrix of the cycle 

matrix M  is 

1

1 1 0

2 2 2 2 1

3 2 3 3 1



 
 
    
 
       

 n y n y

y n y n

M . 

Clearly, if 1   M x y , then 1 x y . 

Associating to the cycle matrix of M , we can see 

1 1 ( 1) 2 2 0           n x y n y y n y , so 

1
2

 
n

y , 2 2 0   n y . The size of matrix elements 

3 2  y n  and 3 3 y n  are related to the value of y  

in 1M . The proof process of Theorem 3 is similar to 

theorem 2. So, we will not go into much detail here. 

3. Conclusion 

By synthesizing Theorem 2 and Theorem 3, we can 

get the important conclusion. 
Theorem 4 Let D  be primitive, then 

2 3
exp( )

2
 

n
D n . 
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